Tabelle der Naturkonstanten

Symbol Quantity Value Relative
standard
uncertainty
speed of light in vacuum 299792458 m⋅s−1 0
\(h\) Planck constant 6.62607015×10−34 J⋅Hz−1 0
\(\hbar = \dfrac{h}{2 \pi}\) reduced Planck constant 1.054571817...×10−34 J⋅s 0
\( \mu _{0}=\dfrac{4\pi \alpha \hbar}{e^{2}c}\) vacuum magnetic permeability 1.25663706127(20)×10−6 N⋅A−2 1.6×10−10
\( Z_{0}=\dfrac{4\pi \alpha \hbar} {e^{2}}\) characteristic impedance of vacuum 376.730313412(59) Ω 1.6×10−10
\( \varepsilon_{0}=\dfrac{e^{2}}{4\pi \alpha \hbar c}\) vacuum electric permittivity 8.8541878188(14)×10−12 F⋅m−1 1.6×10−10
Boltzmann constant 1.380649×10−23 J⋅K−1 0
Newtonian constant of gravitation 6.67430(15)×10−11 m3⋅kg−1⋅s−2 2.2×10−5
\( \sigma =\dfrac{\pi^{2}\,k_{\text{B}}^{4}}{60\hbar ^{3}c^{2}}\) Stefan–Boltzmann constant 5.670374419...×10−8 W⋅m−2⋅K−4 0
Wien wavelength displacement law constant 2.897771955...×10−3 m⋅K 0
Wien entropy displacement law constant 3.002916077...×10−3 m⋅K 0
elementary charge 1.602176634×10−19 C 0
\( G_{0}=\dfrac{2\,e^{2}}{h}\) conductance quantum 7.748091729...×10−5 S 0
\( R_{\text{K}}=\dfrac{h}{e^{2}}\) von Klitzing constant 25812.80745... Ω 0
\(K_{\text{J}}=\dfrac{2e}{h}\) Josephson constant 483597.8484...×109 Hz⋅V−1 0
\(\Phi _{0}=\dfrac{h}{2e}\) magnetic flux quantum 2.067833848...×10−15 Wb 0
\( \alpha =\dfrac{e^{2}}{4\pi \varepsilon _{0}\hbar c}\) fine-structure constant 0.0072973525643(11) 1.6×10−10
electron mass 9.1093837139(28)×10−31 kg 3.1×10−10
muon mass 1.883531627(42)×10−28 kg 2.2×10−8
tau mass 3.16754(21)×10−27 kg 6.8×10−5
proton mass 1.67262192595(52)×10−27 kg 3.1×10−10
neutron mass 1.67492750056(85)×10−27 kg 5.1×10−10
top quark mass 3.0784(53)×10−25 kg 1.7×10−3
\( \dfrac{m_{\text{p}}}{m_{\text{e}}} \) proton-to-electron mass ratio 1836.152673426(32) 1.7×10−11
electron g-factor −2.00231930436092(36) 1.8×10−13
muon g-factor −2.00233184123(82) 4.1×10−10
proton g-factor 5.5856946893(16) 2.9×10−10
\(\dfrac{h}{2\,m_{\text{e}}}\)
quantum of circulation 3.6369475467(11)×10−4 m2⋅s−1 3.1×10−10
\( \mu _{\text{B}}=\dfrac{e\hbar}{2 \, m_{\text{e}}}\) Bohr magneton 9.2740100657(29)×10−24 J⋅T−1 3.1×10−10
\({\displaystyle \mu _{\text{N}}=\dfrac{e\hbar}{ 2m_{\text{p}}}}\) nuclear magneton 5.0507837393(16)×10−27 J⋅T−1 3.1×10−10
\( r_{\text{e}}= \dfrac{\alpha \, \hbar}{m_{\text{e}} \, c}\) classical electron radius 2.8179403205(13)×10−15 m 4.7×10−10
\( \sigma _{\text{e}} = \dfrac{8 \pi}{3} \cdot r_{\text{e}}^{2} \) Thomson cross section 6.6524587051(62)×10−29 m2 9.3×10−10
\( a_{0}= \dfrac{\hbar}{\alpha \, m_{\text{e}} \, c} \) Bohr radius 5.29177210544(82)×10−11 m 1.6×10−10
\(R_{\infty} = \dfrac{\alpha^{2} \, m_e \, c}{2 \, h}\) Rydberg constant 10973731.568157(12) m−1 1.1×10−12
Hartree energy 4.3597447222060(48)×10−18 J 1.1×10−12
Avogadro constant 6.02214076×1023 mol−1 0
molar gas constant 8.31446261815324 J⋅mol−1⋅K−1 0
Faraday constant 96485.3321233100184 C⋅mol−1 0
molar Planck constant 3.9903127128934314×10−10 J⋅s⋅mol−1 0
carbon-12 12.0000000126(37)×10−3 kg⋅mol−1 3.1×10−10
atomic mass constant 1.66053906892(52)×10−27 kg 3.1×10−10
molar mass constant 1.00000000105(31)×10−3 kg⋅mol−1 3.1×10−10
molar volume of silicon 1.205883199(60)×10−5 m3⋅mol−1 4.9×10−8
hyperfine transition frequency of 133Cs 9192631770 Hz 0